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Abstract To counter response distortions associated with
the use of rating scales (a.k.a. Likert scales), items can be
presented in a comparative fashion, so that respondents are
asked to rank the items within blocks (forced-choice for-
mat). However, classical scoring procedures for these
forced-choice designs lead to ipsative data, which presents
psychometric challenges that are well described in the liter-
ature. Recently, Brown and Maydeu-Olivares (Educational
and Psychological Measurement 71: 460–502, 2011a) intro-
duced a model based on Thurstone’s law of comparative
judgment, which overcomes the problems of ipsative data.
Here, we provide a step-by-step tutorial for coding forced-
choice responses, specifying a Thurstonian item response
theory model that is appropriate for the design used, assess-
ing the model’s fit, and scoring individuals on psychological
attributes. Estimation and scoring is performed using Mplus,
and a very straightforward Excel macro is provided that
writes full Mplus input files for any forced-choice design.
Armed with these tools, using a forced-choice design is now
as easy as using ratings.

Keywords Forced-choice format . Thurstonian IRTmodel .

Ipsative data . Multidimensional IRT .Mplus

Typical questionnaire and survey items are presented to
respondents one at a time (single-stimulus items), which
often leads to indiscriminate endorsement of all desirable
items by respondents, resulting in systematic score inflation.
Forced-choice response formats were designed to reduce
such biases by forcing people to choose between similarly
attractive options. In forced-choice questionnaires, items are
presented in blocks of two, three, four, or more items at a
time, and respondents are asked to rank the items within
each block according to some instruction (e.g., in terms of
how well the items describe their behavior or attitudes).
Sometimes, the respondents are asked to indicate only the
top and the bottom ranks (e.g., to select one item that best
describes them and one that least describes them).

One special case of forced-choice is the so-called multidi-
mensional forced-choice (MFC), in which each item is as-
sumed to measure only one psychological attribute, and all
items within a block measure different attributes. MFC ques-
tionnaires are popular in the psychological assessment indus-
try because it is believed that this format is more robust against
response sets, halo effects, and impression management, and
experimental evidence supports these ideas (e.g., Bartram,
2007; Cheung & Chan, 2002; Christiansen, Burns, &
Montgomery, 2005; Jackson, Wroblewski, & Ashton, 2000).

The standard scoring used with forced-choice question-
naires involves adding the inverted rank orders of items
within blocks to their respective scales. As a fixed number
of points are allocated in every block, the total number of
points on the test is the same for every individual (ipsative
data). In other words, one scale score can be determined
from the remaining scales. Ipsativity leads to some highly
undesirable consequences, namely:
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1. Scores are relative rather than absolute; therefore, while
meaningful intraindividual interpretations can be made,
comparisons between individuals are problematic.

2. Construct validity is distorted. Because one scale can be
determined from the remaining scales, the scales’ cor-
relation matrix has one zero-eigenvalue that prevents
the use of factor analysis. More importantly, the average
scale intercorrelation can be derived exactly from the
number of scales, and it must be negative, regardless of
the true relationships between the measured attributes
(see, e.g., Clemans, 1966).

3. Criterion-related validity is distorted. Due to zero vari-
ance of the total score, the correlations between a ques-
tionnaire’s scales and any external criterion must sum to
zero (e.g., Clemans, 1966). Consequently, any positive
correlations with the criterion must be compensated by
spurious negative correlations, and vice versa.

4. Reliability estimates are distorted. Classical reliability
coefficients are not appropriate for forced-choice ques-
tionnaires, because ipsative data violates the assump-
tions underlying them, such as the independence of
measurement errors (e.g., Meade, 2004).

Much has been written about the problems of ipsative data
(for an overview, see Brown, 2010; see also Baron, 1996), and
as a result, forced-choice tests have been controversial. These
psychometric problems, however, are due to the inappropri-
ateness of classical procedures for scoring MFC items, not to
the forced-choice format per se (Brown & Maydeu-Olivares,
2011a). The problem with classical scoring is that it complete-
ly disregards the response process that individuals engage in
when making forced choices. However, because forced-
choice blocks are simply sets of rankings (or partial rankings),
existing response models for ranking data can be adapted for
modeling and scoring forced-choice questionnaire data.

Drawing on Thurstone’s law of comparative judgment
(Thurstone, 1927, 1931), Brown and Maydeu-Olivares
(2011a) recently introduced an item response theory (IRT)
model capable of modeling responses to any MFC question-
naire (Thurstonian IRT model). Brown (2010) showed that
modeling preference decisions in forced-choice questionnaires
using this model yields scores on measured attributes that are
free from the problems of ipsative data. The Thurstonian IRT
model is a multidimensional item response model with some
special features that can be straightforwardly estimated using
the general modeling softwareMplus (L. K.Muthén&Muthén
1998–2010), which also conveniently estimates trait scores for
individuals. The estimation is fast; however, programming
these models in Mplus is tedious and error-prone, except for
very small models, as one needs to impose parameter con-
straints that reflect the within-block patterned relationships
among items. However, the model is conceptually so simple
that the Mplus programming can be easily automated. With

this article, we provide a very simple Excel macro that writes
the Mplus syntax necessary to fit the IRT model to any MFC
questionnaire. Furthermore, we provide a detailed tutorial on
how to model different types of MFC questionnaires and how
to score respondents on the measured attributes.

The article is organized as follows. We begin by providing
general theory for the Thurstonian IRT model. Thus, we de-
scribe how to code responses to forced-choice questionnaires
and how to link these responses to the attributes that the
questionnaire is intended to measure, building a factor-
analytic model with binary variables (an IRT model). We
describe some special features of these models, as well as the
identification constraints necessary to estimate them. We also
show how general multidimensional IRT theory can be applied
to score individuals. Next, we provide an extended tutorial for
modeling specific forced-choice designs using simple numer-
ical examples with simulated data. All of the data sets and
Mplus input files are available for download. In this tutorial,
we cover different block sizes (items presented in pairs, trip-
lets, or quads) and their common and specific features. We
cover both full-ranking and partial-ranking designs. Partial
rankings arise when only the top and bottom ranking choices
(i.e., “most” and “least” choices) are requested, in order to
simplify the task of responding to blocks of four or more items.
In this case, missing data arise, and we provide an example of
how to deal with this using multiple imputation in Mplus.

Thurstonian IRT model

Coding forced-choice responses

Consider a questionnaire consisting of items presented in
blocks of n items each. Respondents are asked to rank the
items within each block. To code their responses, ñ 0 n(n – 1)/
2 binary outcome (dummy) variables per block are used, one
for every pairwise combination of items (Maydeu- Olivares
& Böckenholt, 2005). For instance, to code a rank ordering of
n 0 4 items A, B, C, and D, one needs to consider the out-
comes of ñ 0 6 pairwise comparisons: whether A was pre-
ferred to B, to C, and to D; whether B was preferred to C and
to D, and whether C was preferred to D. To reach the ordering
{B, A, D, C}, B must be preferred in all pairwise comparisons
involving it, and C must not be preferred in any. For each
pairwise combination l 0 {i, k}, a binary variable yl is used to
indicate the outcome of the comparison:

yl ¼
0; if item k is preferred to item i

1; if item i is preferred to item k

:

8<
: ð1Þ

The ordering {B, A, D, C} can then be coded using
binary outcome variables, as follows in Table 1. Sometimes
respondents are only asked to report one item that best
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describes them and one that least describes them. The partial
ranking corresponding to our example above would yield
one missing outcome—the ordering of items A and D is not
known, as we see in Table 2.

Partial-ranking format results in missing binary outcome
variables whenever the block size is four items or more. These
outcomes are missing at random (MAR) because the patterns
of missing responses do not depend on the missing outcomes;
that is, the outcome of the comparison between items that have
not been selected as “most” or “least” is missing not because
any particular preference would be more or less likely, but
because no preference was recorded. However, the outcome is
not missing completely at random (MCAR), because the
patterns of missing responses can be deduced from the ob-
served choices made in the block. For instance, in the example
above, it is known from the observed responses (item B
selected as “most” and item C as “least”) that the comparison
between the two remaining items, A and D, will not be
recorded, so that the binary outcome {A, D} will be missing.
Thus, given the observed most–least choices, the pattern of
missing outcomes is known for each individual.

Modeling preference responses in relation to latent traits

To relate the observed binary outcomes to psychological
attributes measured by the questionnaire, we use the notion
of item utility—an unobserved psychological value placed on
the item by a respondent. The utility of item i is denoted ti.
According to Thurstone’s (1927) law of comparative judg-
ment, items’ utilities are assumed to be normally distributed
across respondents and to determine preferential choices. That
is, given any two items, the respondent deterministically
chooses the item with the highest utility. For computational
reasons, it is convenient to express Thurstone’s model using
differences of utilities. Let yl

* denote the (unobserved) differ-
ence of utilities for the pair of items l 0 {i, k}:

yl
* ¼ ti � tk : ð2Þ

Then, Thurstone’s law can be written by relating the
observed binary outcome to the unobserved difference of
two utilities (we can think of it as a response tendency),

yl ¼ 1 if y*l � 0

0 if y*l < 0
:

n
ð3Þ

In multitrait questionnaires, utilities of items are assumed
to be governed by a set of d psychological attributes (com-
mon factors, or latent traits) according to a linear factor
analysis model

ti ¼ μi þ
Xd
a¼1

λiaηa þ εi; ð4Þ

or, in matrix form,

t ¼ μ þ Λη þ ε ; ð5Þ
where η 0 (η1, η2, . . . ηd) is a vector of common attributes,
Λ is a matrix of factor loadings, μ is a vector of item
intercepts, and ε is a vector of unique factors (specification
and measurement errors)—assumed to be mutually uncor-
related. We let Φ 0 var(η) be the factors’ covariance matrix
(for identification, we set all variances equal to 1 so that it is
a correlation matrix), and Ψ2 0 var(ε) be the diagonal
matrix of the errors’ variances.

Combining Eqs. 2 and 4, we obtain a factor model that
links the preference response tendency to the hypothesized
common attributes,

y*l ¼ ti � tk ¼ �g l þ
Xd
a¼1

ðλia � λkaÞ ηa þ εi � εk ; ð6Þ

where the threshold γl replaces the difference of the item
intercepts: γl 0 –(μi – μk). When items are presented in p
blocks of size n, there are ñ 0 n(n – 1)/2 binary outcomes per
block, and the total number of binary outcomes in the
questionnaire is p × ñ. In matrix form, the (p × ñ) vector
of response tendencies y* of the binary outcomes y is written
as

ð7Þ

Here, γ is a (p × ñ) vector of thresholds; is a (p × ñ) × d
matrix of factor loadings; and is a (p × ñ) vector of
errors with covariance matrix var . The rela-

tionships between the matrices and of the Thur-
stonian IRT model and the matrices Λ and Ψ2 of the
factor-analysis model (Eq. 5) describing the relationship
between the items and the common attributes theymeasure are
given by

ð8Þ

Table 1 Full-ranking forced choice data, restated as binary outcomes

Ranking Binary Outcomes

A B C D {A,B} {A,C} {A,D} {B,C} {B,D} {C,D}

2 1 4 3 0 1 1 1 1 0

Table 2 Partial-ranking forced choice data as binary outcomes, show-
ing missing data

Partial Ranking Binary Outcomes

A B C D {A,B} {A,C} {A,D} {B,C} {B,D} {C,D}

most least 0 1 . 1 1 0
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where A is a block diagonal matrix. When n 0 2, each block in
A is (1 – 1), whereas when n 0 3 and n 0 4, they are, respectively

1 �1 0
1 0 �1
0 1 �1

0
@

1
A;

1 �1 0 0
1 0 �1 0
1 0 0 �1
0 1 �1 0
0 1 0 �1
0 0 1 �1

0
BBBBBB@

1
CCCCCCA
:

ð9Þ

Parameters of the independent-clusters Thurstonian
IRT model

Most confirmatory applications assume that each item meas-
ures only one trait and that the factor model underlying the
item utilities possesses an independent-clusters basis
(McDonald, 1999). This factorial simplicity is certainly the
aim in typical forced-choice questionnaires, and in what
follows, we concentrate on independent-clusters factorial
structures. When questionnaire items measure two or more
attributes, the general theory in Eq. 6 applies. In this case,
the IRT model can be estimated in the same fashion as the
independent clusters; however, additional identification con-
straints are needed (see the Model Identification section).
When items i and k measure different attributes, ηa and ηb
(i.e., a multidimensional comparison), Eq. 6 simplifies to

y*l ¼ �γl þ liηa � lkηb þ εi � εk : ð10Þ
If, instead, i and k measure the same attribute ηa (i.e., a

one-dimensional comparison), Eq. 6 becomes

y*l ¼ �γl þ ðli � lkÞ ηa þ εi � εk : ð11Þ
Thus, the Thurstonian IRT model with p × ñ binary

outcomes contains:

1. p × ñ threshold parameters γl. One threshold γl 0 – (μi –
μk) is estimated for each binary outcome (i.e., we do not
estimate the original intercepts of utilities).

2. p × n factor loading parameters These are the factor
loadings of utilities. Two factor loadings are estimated for
each binary outcome—these relate the response tendency
to the two attributes measured by the items making up the
pairwise comparison. When the block size is n 0 2 (i.e.,
items are presented in pairs), each item is involved in one
pairwise comparison only, and therefore each utility’s
factor loading appears only once in matrix (for an

example, see matrix in Eq. 21). When the block size
is n > 2, each item is involved in n − 1 pairwise compar-
isons, and therefore each utility’s factor loading occurs
more than once (n − 1 times) in matrix , forming

patterns (for example, see matrices for a triplet design
in Eq. 19, and for a quad design in Eq. 20).

3. p × n uniqueness parameters = i
2 These are the unique-

nesses of utilities, and when the block size is n 0 2 (i.e.,
items are presented in pairs), the residual variance ma-

trix var is a p × p diagonal matrix:

ð12Þ

When the block size is n > 2, there is shared variance
between binary outcomes involving the same item, and
is a (p × ñ) × (p × ñ) block-diagonal matrix, with the
following blocks for n 0 3 and n 0 4, respectively:

ð13Þ

ð14Þ

The above special features of matrices and com-
plete the definition of the Thurstonian IRT model.

Model identification

To identify a Thurstonian IRT model (Eq. 10) built for MFC
items that are designed to measure one trait only (also
referred to as multi-unidimensional structure in the IRT
literature), one needs to set a metric for the latent traits
and item errors. The latent traits’ variances are set to 1. To
set a metric for item errors, for blocks of size n > 2 (items
are presented in triplets, quads, etc.), it suffices to fix the
uniqueness of one item per block. Throughout this report,
we use the convention of (arbitrarily) fixing the uniqueness
of the first item in each block to 1. When the block size is
n 0 2 (i.e., items are presented in pairs), no item unique-
ness can be identified. In this case, it is convenient to fix
the uniqueness of each binary outcome (which is the sum
of two item uniquenesses, as can be seen from Eq. 12) to 1.
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The above constraints are generally sufficient to identify
most forced-choice designs. A special case arises when
multidimensional pairs (n 0 2) are used to assess exactly
two attributes (d 0 2). Because this model is essentially an
exploratory factor model, additional identification con-
straints need to be imposed on some factor loadings. This
case is discussed in Example 4.

When questionnaire items measure two or more attributes,
such as in the general case described by Eq. 6, additional
constraints may be needed to identify factor loadings, because
only their differences can be estimated without constraints.
This is similar to the unidimensional model described in
Eq. 11, where setting one factor loading is necessary to
identify the model (Maydeu-Olivares & Brown, 2010).

Nonidentified models may occasionally arise when item
factor loadings within the same block are equal or indistin-
guishable from the empirical data. This might happen in
designs in which positively keyed items measure a small
number of attributes, or the attributes are positively corre-
lated, so that the item parameters are more difficult to
estimate accurately (Brown & Maydeu-Olivares, 2011a).
When the factor loadings li and lk are equal (say, they equal
l), the difference of utilities in Eq. 10 is described by

y*l ¼ �γl þ l ðηa � ηbÞ þ εi � εk : ð15Þ

In this case, the data are sufficiently described by d − 1
differences between each attribute and, say, the last attribute
ηd. Indeed, for any pair of attributes ηa and ηb, their difference
ηa – ηb can be written as (ηa – ηd) – (ηb – ηd). The factor space
is therefore reduced, and additional constraints are needed to
identify the model. In practice, it may not be easy to spot such
empirical underidentification, because no warning of a non-
identified model may be given by Mplus. The researcher
needs to examine the program output very carefully to ensure
that everything is as expected. Typical signs of the described
special case are that estimated factor loadings for one of the
factors are close to zero, standard errors of the correlation
estimates between that factor and other factors are large, and
factor correlations are not as expected (usually too high). In
some cases, Mplus might give a warning in the output that
“the latent variable covariance matrix (Psi) is not positive
definite,” and indicate which factor presents a problem. To
remedy this situation, it usually suffices to constrain the factor
loadings within each block to be equal (without setting their
values), and setting just one correlation between the latent
traits to its expected value (e.g., to a value predicted by
substantive psychological theory).

Parameter estimation and goodness-of-fit testing using Mplus

After the choices are coded as described above, a multi-
unidimensonal model (Eq. 10) or the unidimensional model

(Eq. 11) is fitted to the differences of utilities yl
*. However,

the difference variables yl
* are not observed, only their

dichotomizations yl using the threshold process in Eq. 3
are observed. Hence, a factor model for binary data (the
IRT model) is fitted to the binary outcome variables. All that
is needed is a program capable of estimating such a model.
The program Mplus (L. K. Muthén & Muthén, 1998–2010)
conveniently implements all of the necessary features.

The presence of correlated errors, along with the large
number of latent traits typically measured by forced-choice
questionnaires, precludes the estimation of the model by full-
information maximum likelihood (Bock & Aitkin, 1981).
However, the model can be straightforwardly estimated using
limited-information methods. Unweighted least squares
(ULS) or diagonally weighted least squares (DWLS) can be
used to this end, and the difference between the two is negli-
gible (Forero, Maydeu-Olivares, & Gallardo-Pujol, 2009).
When estimating models with discrete dependent variables,
Mplus offers two choices of parameterization, unstandardized
and standardized parameters, referred to as “theta” and
“delta,” respectively. The Thurstonian IRT model is estimated
as a factor analysis for binary data using the “theta” parame-
terization with the additional constraints on and de-
scribed above. Because contrast matricesA are not of full rank
(Maydeu-Olivares & Böckenholt, 2005), the matrix of resid-
ual variances and covariances is also not of
full rank. This is by design, and therefore for all forced-choice
models Mplus will give a warning that “the residual covari-
ance matrix (theta) is not positive definite.”

The goodness of fit of the model to the tetrachoric correla-
tions is tested by Mplus. The program provides mean or mean
and variance Satorra–Bentler (1994) adjustments to the ULS/
DWLS fit functions. Mean and variance adjustments provide
more accurate p values at the expense of more computations.
The mean and variance adjustment for the ULS estimation is
denoted as “estimator” ULSMV in Mplus, and it is denoted
WLSMV for the DWLS estimation. All models presented in
this article are estimated with Mplus using ULS with mean-
and variance-corrected Satorra–Bentler goodness-of-fit tests
(ULSMV).

With this article, we supply an Excel macro that automates
writing the full code, so that all of the necessary parameter
constraints are specified. Moreover, the Excel macro takes
care of specifying the estimator and parameterization.

When the number of items per block is n > 2, a correction to
the degrees of freedom is needed when testingmodel fit. This is
because for each block there are r 0 n(n – 1)(n – 2)/6 redun-
dancies among the thresholds and tetrachoric correlations esti-
mated from the binary outcome variables (Maydeu-Olivares,
1999). With p ranking blocks in the questionnaire, the number
of redundancies is p × r. Thus, when n > 2, one needs to
subtract p × r from the degrees of freedom given by Mplus to
obtain the correct p value for the test of exact fit. Goodness-of-
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fit indices involving degrees of freedom in their formula, such
as the root mean square error of approximation (RMSEA)

RMSEA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 � df

df � ðN � 1Þ ;
s

ð16Þ

also need to be recomputed using the correct number of degrees
of freedom. When n 0 2, no degrees-of-freedom adjustment is
needed; the p value and RMSEA printed by the program are
correct.

Estimation of individuals’ scores

The item characteristic function (ICF) of the binary outcome
variable yl described, which is the result of comparing item i
measuring trait ηa and item k measuring trait ηb, is given by

Prðyl ¼ l ηa;j ηbÞ ¼ Φ
�g l þ liηa � lkηbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

=2
i þ =2

k

q
0
B@

1
CA

In this function, γl is the threshold for binary outcome, λi
and λk are the items’ factor loadings, and =i

2 and =k
2 are the

items’ uniquenesses. Therefore, the Thurstonian IRT model
can be seen as an extension of the normal ogive IRT model
(Lord, 1952) to situations in which items are presented in
blocks and the underlying structure is multidimensional. A
special feature of this model is that, when block size is n > 2,
the item characteristic functions are not independent (local
independence conditional on the latent traits does not hold).
Rather, there are patterned covariances among the binary
outcomes’ residuals, as shown in Eqs. 13 and 14.

After the model parameters have been estimated,
respondents’ attributes can be estimated using a Bayes mod-
al procedure (maximum a posteriori, or MAP estimator)

FðηÞ ¼ 1
2
η0Φ�1η�

X
l

ln
n
Pr yl ¼ 1ð Þ ηyl 1� Pr yl ¼ 1 ηjð Þ½ �1�yl

�� o
;

ð18Þ
and this is conveniently implemented in Mplus as an
option within the estimation process (B. O. Muthén,
1998–2004). When using Eq. 18, Mplus makes the
simplifying assumption that local independence holds.
The use of this simplification for scoring individuals
has little impact on the accuracy of the estimates (Maydeu-
Olivares & Brown, 2010).

Tutorial on writing Mplus code with the excel macro

Despite the fact that the factorial models (Eqs. 10 and 11)
underlying forced-choice comparisons are simple, the

programming is complicated by the fact that the factor load-
ings and uniquenesses for the differences y* must be
expressed as linear functions of the factor loadings and
uniquenesses of the items. There are also constraints on the
parameter matrices and , which depend on block size,
and writing them out is tedious and error prone. In subsequent
sections, we will provide details on how to estimate the model
for a set of examples (using blocks of different sizes, different
numbers of common attributes, etc.) using the supplied Excel
macro that writes the full Mplus syntax.

Coding the data

Mplus expects the forced-choice responses to be coded
using binary outcomes (dummy variables), as described in
this article: one line per individual. If, however, the forced-
choice data have been recorded using rank orders of items
within each block, or reversed rank orders, as is often the
case with already “ipsative scored” items, the responses
should be recoded as binary outcomes of pairwise compar-
isons. Recall that this coding requires each ranking block of
size n to be presented as ñ 0 n(n – 1) / 2 pairwise compar-
isons {i, k}, each of which takes value 1 if i was preferred to
k, and 0 otherwise. This recoding can be easily performed
using standard statistical software prior to modeling with
Mplus. Alternatively, DEFINE commands can be used to
recode the data within Mplus. For rank-orderings, binary
outcomes of all pairwise combinations of n items are com-
puted as “i1i2 0 i2-i1;” (for ipsative item scores, we use
“i1i2 0 i1-i2;”), and then all outcomes are cut as binary
variables using “CUT i1i2 i1i3 . . . (0);”.

For incomplete rankings, preferences between all items not
selected as “most” or “least” in blocks of size n ≥ 4 should be
coded as missing data, using conditional statements: for
example, “IF (i2 GT i1) THEN i1i2 0 1; IF (i2 LT i1) THEN
i1i2 0 0; IF (i2 EQ i1) THEN i1i2 0 _MISSING;”. In
addition, when missing data are present, the missing
responses have to be imputed prior to model estimation. This
is described in Example 2.

Writing model syntax

To aid programming of Thurstonian IRT models, we
created an Excel macro that can be downloaded from
http://annabrown.name/software. Excel was chosen be-
cause it is widely available, and because it enables
simple “copying and pasting” of questionnaire keys,
correlation matrices, and so forth, straight into the pro-
vided cells. At Step 1, the macro just requires as input
the name of the data file containing the binary outcomes
(the data file may contain additional variables), the
name of a file in which to save the respondents’ scores
(this is optional), the number of forced-choice blocks in
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the questionnaire, and the block size. At Step 2, the
user is required to enter the number of attributes mea-
sured by the questionnaire, and a table is also provided
for inserting the questionnaire “key.” The “key” is sim-
ply a numbered list of all questionnaire items, and the
user has to indicate which attribute (referred to by its
number) each item measures. The macro also has an
option to indicate any negatively keyed items. These are
items designed to represent low attribute scores, such as
“I keep in the background” to indicate extraversion.
This information is optional and is only used for assign-
ing better (negative) starting values for factor loading
parameters. Finally, Step 3 (also optional) enables the
user to provide starting values for the attribute correla-
tion matrix. With this information, the Excel macro
creates the full Mplus syntax, which can be viewed
immediately in Excel, and also copied to a ready-to-
execute Mplus input.

Numerical examples

Below we present some numerical examples using sim-
ulated data. The examples have been designed for illus-
tration only and are necessarily very short. Synthetic
data, available for download together with Mplus input
files, were used to better illustrate the behavior of the
model. As a general foreword for the following exam-
ples, we remind the reader that designing forced-choice
measures with a given block size requires careful con-
sideration of several factors—such as the keyed direc-
tion of items, the number of measured attributes, and
correlations between the attributes (Brown & Maydeu-
Olivares, 2011a). In the examples below, all of these
factors have been balanced to create very short but fully
working “fragments” of forced-choice tests. Such short
questionnaires in practice would necessarily yield latent
trait estimates with high measurement error. Therefore,
these examples should only be used as a guide for
modeling longer questionnaires. Examples of applica-
tions with real questionnaire data are given in the Con-
cluding Remarks section.

Example 1: block size n 0 3, full-ranking response format
Consider a very simple multidimensional forced-choice de-
sign using p 0 4 blocks of n 0 3 items (triplets), measuring d 0
3 common attributes. For simplicity, let the first item in each
block measure the first common attribute, the second item
measure the second attribute, and the third item measure the
third attribute, therefore each attribute is measured by four
items. We assume that each item measures a single trait and
that the traits are possibly correlated (their correlation matrix is
Φ). The data are coded using p × ñ 0 4 × 3 0 12 binary
outcomes in total.

According to this forced-choice design, the item utilities’
loading matrix Λ in Eq. 4 and the pairwise outcomes’
loading matrix in Eq. 7 are:

ð19Þ

As can be seen, the loading matrix is patterned, with
each utility loading appearing exactly twice. The fact that
loadings related to comparisons involving the same items
are the same (may differ in sign) need to be written out in
Mplus using the MODEL CONSTRAINT command
(automatically written by the Excel macro).

The item residual matrix is =2 0 diag(=1
2, . . . , =12

2), and
the pairwise outcomes’ residual matrix is block-diagonal

with elements , as described in Eq. 13. The other model

parameters of the Thurstonian IRT model are the factor
correlation matrix Φ and a set of p × ñ thresholds γ. To
identify the model, we just need to set trait variances to 1
and set the first uniqueness within each block to 1.

To illustrate the discussion, we generated responses from
N 0 2,000 individuals using the parameter values shown in
Table 3. Some factor loadings shown in that table are larger
than unity. This is because these are unstandardized factor
loadings. The data were simulated by generating latent traits
η with mean zero and correlation matrixΦ, as well as errors
with mean zero and covariance matrix , and then

computing . These difference values were

then dichotomized at zero as per Eq. 3. The resulting responses
are provided in the file triplets.dat, which consists of 2,000 rows
and 12 columns, one for each binary outcome variable.

To create Mplus syntax to test this simple model with the
supplied data, one can use the Excel macro. One would need
to specify the data file (triplets.dat), the block size (3), the
number of blocks (4), and the number of attributes measured
(3), and to supply the questionnaire key, which in this
example will look as follows: (1, 2, 3, 1x, 2, 3, 1, 2, 3x, 1,
2x, 3). The numbers indicate which trait is measured by
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each item, and “x” indicates that the item is negatively
keyed. The latter type of input is optional, as it is only
used to supply better (negative) starting values for fac-
tor loading parameters. Also, starting values for corre-
lations between the attributes can optionally be given.
Once input is complete, the syntax written by the Excel
macro can be saved as an Mplus input file and execut-
ed, making sure that the file containing the data is
located in the same directory as the Mplus input file.
Our syntax file triplets.inp can be found in the supple-
mentary materials; it is also given in Appendix A.

After completing the estimation of the supplied data set,
Mplus yields a chi-square test of χ2 0 30.21 on 43 degrees of
freedom. However, each triplet has r 0 n(n – 1)(n – 2) / 6 0 1
redundancy, and there are four redundancies in total, so that
the correct number of degrees of freedom is df 0 39, leading to
a p value of .84. The RMSEA computed using the formula in
Eq. 16 with the correct number of degrees of freedom corre-
sponds, in this case, to the value reported by the pro-
gram (zero) because the chi-square value is smaller than
the df value. The estimated item parameters are reported
in Table 3, along with their standard errors. We can see
in this table that we are able to recover the true param-
eter values reasonably well. The reader must be warned,
however, that the extremely short questionnaire repre-
sented by this small model would not be capable of
estimating persons’ scores with sufficient precision. In
practical applications, many more items per trait are
generally required for reliable score estimation.

Example 2: block size n 0 4, full-ranking and “most–least”
response formats When the block size, n, is larger than

3, no new statistical theory is involved. Bear in mind,
however, that if we wish for each item within a block
to measure a different trait, the number of traits mea-
sured by the questionnaire, d, must be equal to or
larger than the block size. In the present example, we
use p 0 3 quads (blocks of n 0 4 items) to measure d 0 4 traits.
Hence, each trait is measured by only three items.
Specifically, Trait 1 is measured by Items 1, 5, and 9;
Trait 2 is measured by Items 2, 6, and 10; Trait 3 is
measured by Items 3, 7, and 11; and Trait 4 is mea-
sured by Items 4, 8, and 12. We provide in Table 4 a
set of true parameter values for this example.

When items are presented in quads, six binary out-
comes are needed to code the responses to each quad;
hence, p × ñ 0 3 × 6 0 18 binary outcomes are needed
in total. The utilities’ factor loadings matrix Λ and the
pairs’ loading matrix are

ð20Þ

As can be seen, each utility loading appears exactly three
times in the pairs’ loading matrix . The item residual

Table 3 True and estimated parameters for Example 1: Three traits measured by four triplets

Par. True Est. Par. True Est. Par. True Est.

l1 1 1.08 (0.14) =1
2 1 1 (–) γ1 0.5 0.56 (0.08)

l2 0.8 0.86 (0.11) =2
2 1 1.17 (0.30) γ2 –1.2 –1.25 (0.12)

l3 1.3 1.36 (0.14) =3
2 1 0.88 (0.29) γ3 –1.7 –1.73 (0.18)

l4 –1.3 –1.30 (0.17) =4
2 1 1 (–) γ4 0.7 0.62 (0.07)

l5 1 1.00 (0.13) =5
2 1 0.87 (0.23) γ5 1 0.94 (0.10)

l6 0.8 0.80 (0.11) =6
2 1 1.23 (0.28) γ6 0.3 0.30 (0.06)

l7 0.8 0.80 (0.10) =7
2 1 1 (–) γ7 –0.7 –0.67 (0.08)

l8 1.3 1.32 (0.13) =8
2 1 0.76 (0.26) γ8 –1.2 –1.13 (0.09)

l9 –1 –0.97 (0.10) =9
2 1 0.80 (0.22) γ9 –0.5 –0.45 (0.07)

l10 1.3 1.08 (0.11) =10
2 1 1 (–) γ10 0.7 0.63 (0.06)

l11 –0.8 –0.63 (0.08) =11
2 1 0.89 (0.18) γ11 1.2 1.15 (0.09)

l12 1 0.81 (0.08) =12
2 1 0.79 (0.18) γ12 0.5 0.50 (0.06)

ϕ12 –0.4 –0.39 (0.04) ϕ13 0 0.00 (0.05)

ϕ23 0.3 0.34 (0.05)

Standard errors in parentheses. N 0 2,000. The first uniqueness in each block is set to 1 for identification, =1
2 0 =4

2 0 =7
2 0 =10

2 01
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matrix is Ψ2 0 diag(ψ1
2, . . . , ψ12

2), and the pairwise
outcomes’ residual matrix is block-diagonal with ele-

ments , as is shown in Eq. 14. In addition to the factor

loadings and uniquenesses, the model implies estimating the
factor correlation matrix Φ and a set of p × ñ thresholds γ.
Again, the model is identified simply by setting trait variances
to 1 and setting the first item uniqueness in each block to 1.

The purpose of this example is to discuss estimation
when the “most–least” response format is used with
ranking blocks of size n > 3. In this case, not all binary
outcomes are observed, and the missing data are MAR
(missing at random), but not MCAR (missing complete-
ly at random). Asparouhov and Muthén (2010a) illus-
trated the deficiencies of least-squares estimation under
MAR conditions and showed that a multiple-imputation
approach is effective in addressing these problems. We
will use the multiple-imputation facility available in
Mplus when estimating the IRT model for the “most–
least” data.

The file quads_most_least.dat contains a simulated sample
of 2,000 respondents providing “most–least” partial rankings.
Except for the missing data, the responses are equal to those in

the file quads_full_ranking.dat, which is given for compari-
son. Both data sets were generated by dichotomizing differ-
ence variables , computed using the true
model parameters. In the most–least data, the binary compar-

ison involving the two items not selected as “most-like-me” or
“least-like-me” was set as missing.

The file quads_full_ranking.inp, which can be readily
generated with the Excel macro, contains the Mplus syntax
for estimating the full-ranking data in quads_full_ranking.-
dat. To generate this syntax, one has to specify the block
size (4), the number of blocks (3), and the number of
attributes measured (4), and to supply the questionnaire
key, which in this example will look as follows: (1, 2x, 3,
4, 1x, 2, 3, 4, 1, 2, 3x, 4). The numbers indicate which trait
is measured by each item, and “x” indicates which items are
negatively keyed in relation to the measured trait.

For the full rankings, Mplus yields a chi-square test of
χ2 0 112.20 on 126 degrees of freedom. However, each
quad has r 0 n(n – 1)(n – 2) / 6 0 4 redundancies, and there
are in total 12 redundancies in the questionnaire, so that the
correct number of degrees of freedom is df 0 114, leading to
a p value of .530, and the correct RMSEA is 0. The

Table 4 True and estimated parameters for Example 2: Four traits measured by three quads

Par. True Est. Full
Ranking

Est. Most–Least Par. True Est. Full
Ranking

Est. Most–Least Par. True Est. Full
Ranking

Est. Most–Least

l1 1 1.09 (0.13) 1.04 (0.14) =1
2 1 1 (–) 1 (–) γ1 0.5 0.57 (0.06) 0.56 (0.07)

l2 –0.8 –0.83 (0.09) –0.77 (0.1) =2
2 1 1.02 (0.19) 0.97 (0.19) γ2 –1 –0.97 (0.09) –0.96 (0.1)

l3 1.3 1.25 (0.12) 1.25 (0.13) =3
2 1 1.47 (0.33) 1.28 (0.34) γ3 0.5 0.59 (0.06) 0.6 (0.07)

l4 0.8 0.74 (0.09) 0.69 (0.09) =4
2 1 1.25 (0.21) 1.22 (0.22) γ4 –1.5 –1.5 (0.13) –1.4 (0.13)

γ5 0 0.04 (0.05) 0.02 (0.06)

γ6 1.5 1.57 (0.13) 1.51 (0.13)

l5 –1.3 –1.25 (0.18) –1.25 (0.23) =5
2 1 1 (–) 1 (–) γ7 –0.3 –0.34 (0.06) –0.32 (0.07)

l6 1 1.08 (0.13) 1.08 (0.16) =6
2 1 0.83 (0.2) 0.78 (0.24) γ8 –0.3 –0.36 (0.07) –0.33 (0.07)

l7 0.8 0.8 (0.11) 0.8 (0.12) =7
2 1 1.25 (0.21) 1.22 (0.22) γ9 –0.8 –0.79 (0.1) –0.88 (0.13)

l8 1.3 1.3 (0.14) 1.22 (0.19) =8
2 1 0.65 (0.27) 0.83 (0.31) γ10 0 –0.09 (0.05) –0.09 (0.05)

γ11 –0.5 –0.53 (0.08) –0.47 (0.09)

γ12 –0.5 –0.5 (0.07) –0.5 (0.08)

l9 0.8 0.84 (0.1) 0.9 (0.17) =9
2 1 1 (–) 1 (–) γ13 1.5 1.62 (0.13) 1.6 (0.16)

l10 1.3 1.41 (0.13) 1.38 (0.17) =10
2 1 1.35 (0.31) 1.37 (0.39) γ14 2 2.16 (0.15) 2.19 (0.24)

l11 –1 –1.06 (0.11) –1.14 (0.14) =11
2 1 0.89 (0.24) 0.81 (0.28) γ15 0.5 0.49 (0.06) 0.55 (0.07)

l12 1 0.99 (0.1) 1.07 (0.16) =12
2 1 1.18 (0.23) 1.19 (0.28) γ16 0.5 0.51 (0.08) 0.5 (0.09)

γ17 –1 –1.04 (0.1) –1.05 (0.13)

γ18 –1.5 –1.61 (0.13) –1.71 (0.19)

ϕ12 –0.4 –0.43 (0.04) –0.43 (0.06) ϕ13 0 –0.02 (0.05) –0.03 (0.06) ϕ14 0.4 0.39 (0.04) 0.39 (0.05)

ϕ23 0.3 0.33 (0.05) 0.35 (0.05) ϕ24 –0.3 –0.29 (0.05) –0.31 (0.06)

ϕ34 0 0.08 (0.05) 0.10 (0.06)

Standard errors in parentheses. N 0 2,000. The first uniqueness in each block is set to 1 for identification, =1
2 0 =5

2 0 =9
2 01. Parameters for the

full-ranking data are based on one data set; parameters for the most–least data are averaged across 20 imputed data sets
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estimated model parameters are reported in Table 4, along
with their standard errors.

Estimation of the Thurstonian IRT model for quads
using the “most–least” response format is performed
using the syntax in quads_most_least.inp, which is giv-
en in Appendix B. This syntax is identical to the syntax
for full rankings, except that multiple data sets are
generated prior to estimation using the DATA IMPUTA-
TION command. Here, we order 20 data sets to be
generated in which missing responses are imputed using
Bayesian estimation of the unrestricted model (Asparou-
hov & Muthén, 2010b). This multiple imputation is
followed by the estimation of the forced-choice model
for full rankings on each of the imputed data sets, using
the ULSMV estimator as usual.

When multiple imputations are used, there is no easy
way to combine the model fit test statistics and other fit
indices from the imputed samples. Mplus prints simple
averages, which should not be interpreted for model fit
(L. K. Muthén, 2011). Across 20 imputations, we
obtained an average chi-square of χ2 0 206.15 (SD 0

25.01), and using the correct value for degrees of free-
dom, df 0 114, the average p value is p<.001, and the
average RMSEA is 0.020. For each individual imputa-
tion, the model fit had deteriorated somewhat as com-
pared to when the full-ranking data were used, which is
generally the case with imputed data (Asparouhov &
Muthén, 2010b). For comparison, fitting the IRT model
straight to the data with missing responses in quads_
most_least.dat results in a very poor model fit (χ2 0

1,009.06, p 0 .000, and RMSEA 0 0.063). In addition,
the model fitted to imputed data recovered the true param-
eter values well, as can be seen from Table 4, while the
model fitted straight to data with missing responses
yielded factor loadings that were too high. Therefore,
multiple imputation is the recommended solution to esti-
mating the Thurstonian IRT model for partial rankings.

Example 3: block size n 0 2, measuring more than two
attributes (d > 2) In this example, we consider a special
case of the general theory: items presented in pairs. In this
case, no item uniqueness can be identified. It is convenient
to assume that both uniquenesses equal .5 because in that
case the residual variance of the binary outcome equals
unity, and the factor loadings and thresholds will be auto-
matically scaled in the IRT intercept/slope parameterization
(Eq. 17). Another feature of this special case is that there are
no redundancies among the thresholds and tetrachoric cor-
relations. As a result, the degrees of freedom printed by
Mplus do not need to be adjusted.

To illustrate this case, consider three attributes (d 0 3),
each measured by four items arranged in p 0 6 pairs (n 0 2).
Thus, there are p × ñ 0 6 × 1 0 6 binary outcomes in total.

For this model, the items’ loading matrix Λ (12×3) and the
pairs’ loading matrix (6×3) are

ð21Þ

It can be seen that presenting the items in pairs, as
opposed to presenting them one at a time using binary
ratings, halves the number of obtained observed variables
(binary outcomes). It can also be seen that, given the same
number of items, pairs yield fewer binary outcomes as
compared to triplets (Example 1) and quads (Example 2);
hence, the pairs design will require more items in order to
achieve a similar amount of information.

The item residual matrix Ψ2 0 diag(=1
2, . . . , =12

2) is
diagonal, and the pairwise outcomes’ residual matrix is also

diagonal, as is shown in Eq. 12, ( ),
with six elements that are sums of the original 12 item residuals.
In the Thurstonian IRT model, there are 12 factor loadings,
three correlations between factors, and six thresholds to esti-
mate (21 parameters in total). We have only six binary out-
comes, providing 6 × 7/2 0 21 pieces of information; the model
is just identified, and the number of degrees of freedom is zero.
We can still estimate the model parameters, but we cannot test
the goodness of fit of the model—for that, the number of items
in the questionnaire would have to be larger.

Using the Excel macro for creating syntax in this case is no
different from what has been described for the previous mod-
els: One has to specify the data file (pairs3traits.dat), the block
size (2), the number of blocks (6), and the number of attributes
measured (3), and to supply the questionnaire key, which in
this example will look as follows: (1, 2, 3, 1, 2, 3, 1, 2x, 3, 1x,
2, 3x). As in previous examples, the numbers indicate which
trait is measured by each item, and “x” indicates which items
are negatively keyed in relation to the measured trait.
The syntax written by the Excel macro can be saved as
an Mplus input file. Our syntax in pairs3traits.inp can
be found in the supplementary materials; it is also given
in Appendix C.

The true and estimated model parameters for this exam-
ple are reported in Table 5. It can be seen that, again, the true
parameters are recovered well.

Example 4: block size n 0 2, measuring exactly two attrib-
utes (d 0 2) In this example, we consider a further special
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case—items presented in p pairs (n 0 2) with exactly two
dimensions being measured (d 0 2). In this case, we have an
exploratory two-factor analysis model with p binary variables.

To see this, consider an example in which 12 items are
presented in p 0 6 pairs. For simplicity, assume that the first
item in each pair measures the first trait and the second item
measures the second trait. For the Thurstonian IRT model,
we obtain the residual variance matrix as described in
Eq. 12, and it is the same as in Example 3. However, while
the item factor loading matrix Λ is an independent-clusters
solution, the pairs’ loading matrix has no zero elements:

ð22Þ
Therefore, this is simply an exploratory two-factor

model for p binary variables. Since the two factors are
assumed to be correlated, two elements of need to be
fixed to identify the model (McDonald, 1999, p. 181).
In practice, this can be easily accomplished by fixing
the factor loadings of the first item. Any two values
will do, provided that the factor loading on the second

factor is opposite to its expected value—see Eq. 22. For
this example, since we wish to show how well we are
able to recover the true solution, we set the factor
loadings of the first item to their true values.

To create Mplus syntax using the Excel macro, one
has to specify the data file (pairs2traits.dat), the block
size (2), the number of blocks (6), and the number of
attributes measured (2), and to supply the questionnaire
key (1, 2, 1, 2, 1, 2, 1, 2x, 1x, 2, 1, 2x). Our syntax
written by the Excel macro to file pairs2traits.inp can be
found in the supplementary materials; it is also given in
Appendix D.

Testing this model with the supplied data yields χ2 0
3.40 on four degrees of freedom (which is the correct
number and does not need adjustment when items are
presented in pairs); the p value is .494, and RMSEA 0
0. The estimated and true model parameter values are
presented in Table 6, and it can be seen that the model
recovers the true parameter values well.

Concluding remarks

Because of their advantages in reducing or counteracting
some response biases commonly arising when using rating
scales, forced-choice assessments are becoming increasingly
popular, and forced-choice measurement is a growing area of
research. With the development of models suitably describing
comparative data, such as the Thurstonian IRT model dis-
cussed here or the multi-unidimensional pairwise-preference
model (Stark, Chernyshenko, & Drasgow, 2005), and the
availability of software capable of fitting them, such modeling
will become more accessible to researchers.

Table 5 True and estimated parameters for Example 3: Three traits
measured by six pairs

Par. True Est. Par. True Est.

l1 0.6 0.63 (0.12) γ1 0.5 0.59 (0.07)
l2 1.0 1.00 (0.17)

l3 0.8 0.81 (0.16) γ2 –0.7 –0.66 (0.07)
l4 1.0 0.86 (0.16)

l5 0.6 0.62 (0.16) γ3 0.5 0.42 (0.05)
l6 1.0 0.97 (0.18)

l7 0.8 0.73 (0.18) γ4 –0.8 –0.82 (0.08)
l8 –1.0 –0.95 (0.20)

l9 0.6 0.58 (0.12) γ5 0.3 0.37 (0.05)
l10 –0.6 –0.92 (0.15)

l11 0.8 0.66 (0.11) γ6 0.7 0.66 (0.06)
l12 –0.8 –0.77 (0.11)

ϕ12 –0.4 –0.33 (0.09) ϕ13 0 0.07 (0.10)

ϕ23 0.3 0.36 (0.09)

Standard errors in parentheses. N02,000. All item uniquenesses are set
to .5 for identification

Table 6 True and estimated parameters for Example 4: Two traits
measured by six pairs

Par. True Est. Par. True Est.

l1 0.6 0.6 (–) γ1 0.50 0.51 (0.04)
l2 0.8 0.8 (–)

l3 0.8 0.81 (0.13) γ2 –0.70 –0.64 (0.06)
l4 1.0 1.00 (0.16)

l5 1.0 1.08 (0.15) γ3 0.50 0.53 (0.06)
l6 0.6 0.70 (0.16)

l7 0.8 0.63 (0.09) γ4 –0.80 –0.72 (0.06)
l8 –1.0 –0.84 (0.11)

l9 –0.6 –0.63 (0.07) γ5 0.30 0.29 (0.04)
l10 0.6 0.59 (0.09)

l11 0.8 0.86 (0.12) γ6 0.70 0.77 (0.07)
l12 –0.8 –0.85 (0.14)

ϕ21 0 0.16 (0.15)

Standard errors in parentheses. N02,000. All item uniquenesses are set
to .5 for identification
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Despite the ease with which forced-choice data can be
tested using the provided tutorial and the automated syntax
writer (Excel macro), however, one needs to pause and
consider all of the “specialties” of the forced-choice format
and of the data arising from it. Because every judgment
made in this format is a relative judgment, careful consid-
eration is needed to design forced-choice questionnaires that
will be capable of recovering absolute trait scores from
these relative judgments.

Maydeu-Olivares and Brown (2010) discussed rules gov-
erning good forced-choice measurement with one measured
trait. As can be seen from Eq. 11, in the one-dimensional
case, the discrimination power of each comparison is deter-
mined by the difference of factor loadings of the two items
involved. Two perfectly good, equally discriminating items,
therefore, could be put together to produce a useless forced-
choice pair with near-zero discrimination. To maximize the
efficiency of the forced-choice format in this case, one
would need to combine items with widely varying factor
loadings—for instance, with positive and negative loadings,
or with high and low positive loadings. If socially desirable
responding is a concern, special care must be taken to create
pairs with no obvious valence. This might be challenging
when items with positive and negative loadings are com-
bined in one block, and consequently measuring one trait
with forced-choice items might not be any more robust to
socially desirable responding than is using single-stimulus
items. The universal benefit of the forced-choice format—
removal of uniform biases, such as acquiescence or central-
tendency responding—will of course remain.

When multidimensional forced-choice blocks are used,
yet more factors need to be taken into account. All of the
following considerations—the keyed direction of items,
number of measured attributes, correlations between the
attributes, and block size—are important (Brown &
Maydeu-Olivares, 2011a). For instance, when a larger num-
ber of attributes (15 or more) are modeled, all positively
keyed items may be used to successfully recover the indi-
vidual scores (Brown, 2010), provided that the traits are not
too highly correlated. However, if only a small number of
latent traits are assessed, as was the case in the numerical
examples in this report, both positively and negatively
keyed items must be combined in blocks in order to accu-
rately recover the true model parameters and the individual
scores. In this case, the considerations related to socially
desirable responding discussed above also apply, although
matching positively and negatively keyed items on social
desirability may be easier when the items measure different
attributes.

In closing, since the purpose of this report was exposito-
ry, very short questionnaires were used. Yet IRT parameter
recovery and latent trait estimation accuracy depend criti-
cally on the number of items per dimension. In applications,

a larger number of indicators per dimension should be used,
leading to more accurate item parameter and latent trait
estimates than those reported here; see Brown and
Maydeu-Olivares (2011a) for detailed simulation study
results. An additional consideration is that, given the same
numbers of items, smaller blocks (i.e., pairs) produce fewer
binary outcomes per items used, and therefore provide less
information for a person’s score estimation than do larger
blocks (i.e., triplets or quads).

The Thurstonian IRT model has been successfully used
with real questionnaire data, with the primary objectives of
estimating the item parameters and the correlations between
the latent traits, and to score test takers on the measured
attributes. One example is the Forced-Choice Five Factor
Markers (Brown & Maydeu-Olivares, 2011b), which is a
short forced-choice questionnaire consisting of 20 triplets
with both positively and negatively keyed items. Its IRT
modeling in a research sample yielded successful estimation
of the absolute trait standing, as compared to normative
scores using rating scales (Brown & Maydeu-Olivares,
2011a). Other applications with real questionnaire data in-
clude the development of the IRT-scored Occupational Per-
sonality Questionnaire (OPQ32r; Brown & Bartram, 2009)
and the construct and criterion validity study using the
Customer Contact Styles Questionnaire (CCSQ; Brown,
2010). These large-scale workplace questionnaires measur-
ing 32 and 16 attributes, respectively, were based on multi-
dimensional comparisons with positively keyed items only.

In this article, we have provided a tutorial on how to fit
the Thurstonian IRT model to any forced-choice question-
naire design using Mplus. We have also supplied an easy-
to-use Excel macro that writes Mplus syntax for all such
designs. Equipped with these tools, the reader can model
any forced-choice data—for instance, estimate model-
based correlations between the psychological attributes—
adequately, without distortions caused by the use of clas-
sical scoring procedures. Most importantly, this modeling
enables access to persons’ scores on latent attributes that
are no longer ipsative.
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